
FoMSESS-Jahrestreffen 2023

4-5.10.2023

Extended Abstracts



Die Fachgruppe FoMSESS1 im GI-Fachbereich Sicherheit beschäftigt sich mit der Anwendung von For-
malen Methoden und Software Engineering in der Entwicklung sicherer Systeme.

In ihren Jahrestreffen bietet die Fachgruppe die Möglichkeit, über aktuelle Forschungsarbeiten zu berichten
und zu diskutieren und sich mit Gleichgesinnten zu vernetzen.

Das Jahrestreffen 2023 wurde online durchgeführt. Auch diesmal gelang es, zwei Nachmittage mit in-
teressanten Vorträgen und lebhaften Diskussionen zu füllen. Die Vortragenden bekamen auch dieses Jahr
die Möglichkeit, Extended Abstracts ihrer Beiträge zu verfassen, um diese auf der FoMSESS-Webseite zu
veröffentlichen. Das Ergebnis sehen Sie gerade vor sich.

Viel Spaß beim Lesen!

Zoltan Mann, Dezember 2023

1https://fg-fomsess.gi.de

1



Towards the Formal Verification of Neural
Networks?

Extended Abstract

Achim D. Brucker[0000−0002−6355−1200] and Amy Stell[0000−0003−0714−3269]

Department of Computer Science
University of Exeter

Exeter, UK
{a.brucker,as1343}@exeter.ac.uk

1 Introduction

Neural networks (i. e., deep learning) are being used successfully to solve clas-
sification problems, e. g., for detecting objects in images. At the same time, it
is well known that neural networks are susceptible if small changes applied to
their input result in misclassification. Situations in which such a slight input
change, often hardly noticeable by a human expert, results in a misclassification
are called adversarial attacks. Such adversarial attacks can be life-threatening
if, for example, they occur in image classification systems used in autonomous
cars or medical diagnosis.

This susceptibility of neural networks to small variations in inputs posses
a challenge to the use of neural networks in safety-critical or security-critical
applications. This is particularly true for high-integrity systems that need to
undergo a formal verification process. Whereas formal verification of traditional
programs usually rely on the existence of an implementation whose compliance
to a specification can be verified, such an implementation or algorithm that
precisely describes the behaviour does, per se, not exist for neural networks.

To address this challenge, we are developing a formal verification approach,
using Isabelle/HOL, for neural networks [3, 2]. Our approach is based on a
formal embedding of feedforward neural networks into Isabelle/HOL. On top
of this formalisation, we are developing a verification approach that allows for
the verification of safety and security properties of trained neural networks. We
make use of the framework aspect of Isabelle for providing an import mechanism
to automate our encoding for neural networks stored in a widely used exchange
format, e. g., supported by TensorFlow [1].

Most current works in applying formal methods to neural networks are focus-
ing on ReLU networks [4]. In our choice of using an expressive formalism (i. e.,
higher-order logic) in an interactive theorem prover, we will be able to also sup-
port networks with more complex activation functions. Furthermore, this choice
? This work was supported by the Engineering and Physical Sciences Research Council

[grant number 670002170].

2



allow for a seamless integration of our approach for verifying neural networks
into existing program verification approaches supported by Isabelle. This will,
ultimately, allow for the end-to-end verification of complex systems that combine
traditional programming with components based on neural networks.

Still, we see our work only as the beginning of a journey towards formally
verified safety and correctness guarantees for critical systems employing ML/AI-
based components. On a general level, there is further work required to improve
the understanding of what it means for a neural network to be safe (and secure),
and how to convert this into a formal specification. This discourse will, hopefully,
result in further properties that can be used in formal verification, and will
allow for a comparison amongst various formal approaches for the verification of
neural networks. More specific to our approach, we plan to extend the classes of
neural networks supported and also improve the degree of automation and the
performance of the automated verification methods.

Availability. A more detailed report has been published in the Proceedings of
the Formal Methods conference 2023 [3]. The formalisation and case studies are
available to view on Zenodo [2]. The materials include both the Isabelle/HOL
implementation and the detailed documentation generated by Isabelle.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., S. Corrado,
G., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Systems. Software available
from tensorflow.org. 2015. https://www.tensorflow.org/.

2. Brucker, A.D., and Stell, A.: Dataset: Feedforward Neural Network Verification in
Isabelle/HOL. Dec. 2022. doi: 10.5281/zenodo.7418170.

3. Brucker, A.D., and Stell, A.: Verifying Feedforward Neural Networks for Classific-
ation in Isabelle/HOL. In: Formal Methods (FM 2023). Ed. by M. Chechik, J.-P.
Katoen and M. Leucker. Springer-Verlag, Lübeck, Germany (2023)

4. Singh, G., Gehr, T., Püschel, M., and Vechev, M.: Boosting robustness certification
of neural networks. In: Learning Representations (2018)

3



Security Compliance: From Requirements to Runtime

Sven Peldszus

Ruhr University Bochum, Germany, sven.peldszus@rub.de

Abstract. Modern software-intensive systems often operate in a variety of critical environments,
such as healthcare or autonomous driving, under constantly changing environmental conditions. In
order to perform their diverse tasks under these conditions, such systems must constantly adapt
their operating parameters and reconfigure their systems from time to time. Considering the es-
sential security requirements inherent to these systems and the domains in which they operate,
this tremendous dynamism exacerbates the problem of verifying the compliance of the implemented
systems. In the end, it is inevitable to verify security at runtime. To do this, we must trace security
requirements through the entire software development life cycle, from requirements to runtime, and
verify compliance at each development phase. Current approaches to this problem rely on extensive
manual effort or rigorous processes with detailed low-level traceability links, which are typically not
feasible for large and complex systems such as robotic systems. One of the main obstacles is the sig-
nificant differences in how security is addressed at different stages. To develop effective approaches
applicable to complex, potentially distributed systems, we need to bridge this gap to systematically
incorporate security checks both statically and dynamically at runtime.

1 Introduction

Today, a growing number of helpful but also security-critical systems, such as autonomous driving systems,
are entering our lives. Frequently, new attacks on these systems are discovered, such as white stickers on
the road that cause an autonomous vehicle to move into the oncoming lane [1]. Preventing all attacks
is non-trivial due to the enormous complexity of modern software-intensive systems. While software-
intensive systems have always consisted of parts that are not statically analyzable, such as dynamic class
loading or Java reflection, machine learning models are now an integral part of many of them. For example,
the Apollo autonomous driving system consists of 28 machine learning models [15]. As a result, developing
secure software-intensive systems is becoming more challenging, and well-defined security requirements
and proper encapsulation are more important than ever.

An important task in the secure development process is defining trust boundaries [16]. Anything
within a trust boundary is assumed to be secure and can arbitrarily access the resources within the
trust boundary. In this way, we can conceptually limit our security considerations to communication that
crosses a trust boundary. For an autonomous car, such a security architecture is typically designed in an
onion style [2]. At the trust boundaries, we need to identify and plan appropriate security features such
as access control, secure communication, etc. to counter identified threats [16].

Then developers implement the security design while realizing the intended functionality of the system.
During this process, all sorts of errors can occur, from simple bugs to potentially security-critical bugs to
actual exploitable vulnerabilities. In the end, it is unavoidable to verify that the intended security design
is implemented and that the system does not contain exploitable vulnerabilities. We need to verify that
the intended security design is properly implemented and that all security-related assumptions are valid.
Unfortunately, such verifications have to be performed mainly manually in the form of some code reviews
by security experts. Even when vulnerabilities are discovered, there is often no guarantee that they have
been fixed by the time a new product version is released [3].

A particular challenge is that not everyone is a security expert, but any design or programming
activity can have security implications. An additional burden is that developers usually work primarily
on the concrete implementation, while security experts work on high-level representations for planning
the security design [7]. Overall, the different security-related tasks come with different requirements for
how to handle them in the most effective way. In particular, at the implementation level, many static
analyzers have been developed to help implement more secure code. However, these checks are usually
locally restricted and often focus on individual code statements, such as checking for the secure use of a
cryptographic API [5] or possible buffer overflows [6]. While these checks are important, a single detected
code smell does not necessarily constitute a critical design flaw [12]. Furthermore, the relationship to the
security design is missing, although this is essential for assessing exploitability and possible consequences.

4



Finally, such security checks, be they the static security checks outlined or manual security reviews,
can only estimate what will happen at runtime. However, modern software-intensive systems are contin-
uously adapt to their environment, e.g., an autonomous vehicle that reconfigures its sensors and driving
behavior according to the weather as well as the driving situation, making it infeasible to verify each
individual configuration [13]. Furthermore, this often involves statically not analyzable constructs, such
as dynamically loaded classes realizing the different driving behaviors. Therefore, we also need dynamic
checks for those properties that cannot be checked statically.

Overall, we need to continuously trace security requirements throughout the software development
life cycle (SDLC) and verify that the system meets these security requirements at each phase. In the
following, we outline our work on coupling security analysis throughout the different phases of the software
development life cycle, and discuss what is needed for effective security compliance checking in the future.

2 Background and Motivation

Following the principle of security by design [4, 7], security requirements and corresponding measures are
planned from the very beginning of software development. A common practice is to annotate design-time
models with security requirements, aided by tool support, to plan which security requirements need to
be met where, and to improve the security design [4, 18].

For example, secure data flow diagrams (SecDFDs) [18] extend data flow diagrams (DFDs), which
are commonly used in threat modeling approaches such as STRIDE [16], with concrete security levels
for communicated data and allow to plan secure data flow in terms of data processing contracts such as
joining, forwarding, or encrypting data [18]. In the implementation, we need to ensure that the imple-
mented data flows match the planned ones and that all data processing contracts are realized. To this
end, we propose a semi-automated mapping between the SecDFDs and the corresponding implementation
to verify that the implementation reflects the planned structure in terms of convergence, divergence, and
absence of planned processes and data flows [14]. Based on this mapping, we can then perform concrete
static checks that verify data processing contracts and automate the configuration of taint analyzers [17].

The concrete security design of the system can then be optimized at the system architecture level using
UMLsec [4], which allows to define a more detailed security design [9], e.g., concerning the trust boundaries
from threat modeling, by annotating UML design models with security requirements. In particular, we in-
vestigated the UMLsec secure dependency annotations, which allow a detailed structuring of applications
into security levels concerning the confidentiality and integrity of data and services [9]. For the UML class
diagrams used, we can create and maintain traceability by tightly coupling the class diagrams to the im-
plementation and co-evolving them using a bi-directional transformation between them [7]. In this way, de-
tailed correspondences between model elements and implementation elements are created and maintained.
Based on these correspondences, we were able to statically verify that the implementation is compliant
with the planned security levels and even incrementally re-verify this compliance in case of changes [8].
Since programming languages such as Java contain statically unanalyzable concepts such as dynamic
class loading and Java reflection, such checks cannot cover all situations that may occur at runtime. To
cover these cases, we provide a runtime monitor that dynamically detects violations of the UMLsec secure
dependency security annotations at runtime [9]. This monitor even allows to take active countermeasures
to protect the system and to adapt the design models to facilitate the investigation of prevented attacks.

While the techniques outlined are successful in verifying the compliance with the security design, they
are specifically tailored to concrete design-time security aspects and rely on a detailed coupling between
design models and code. These circumstances may limit the application of the techniques to domains
where traceability is required by standards, such as the medical or automotive domains, but may be too
much overhead for other domains.

3 Enhancing Security Compliance Checks

Our preliminary works have shown the principle feasibility of automated verification of the compliance of a
system with its security design throughout its entire development life cycle. However, for a widespread ap-
plication and further improvement, we have identified three aspects on which future research should focus.

3.1 Lightweight Security Traceability

To enable security compliance reviews, it is essential to establish traceability between artifacts created
throughout the SDLC. Manually documenting and maintaining trace links is a huge effort and is therefore
usually only done when required by an industry standard or regulatory requirement.

5



To this end, in our previous work we have used model transformation technologies to automatically
co-evolve design models and their implementation [7, 9]. In this way, we are able to abstract the task of
creating trace links from the users, while not only ensuring traceability at all times, but even avoiding
divergence of the implementation from the models. The applied synchronization technology has proven to
be effective for maintaining an analysis model that we used for verifying and executing refactorings [10,
11] and design flaw detection [12], but comes with drawbacks regarding the details of the design models.
While the analysis model is close to the implementation it represents, for design models we have more
abstraction. As a result, the design model has to grow in detail with the implementation, which may
limit its practical applicability to model-based development processes where the growing model is linked
to more abstract models. Nevertheless, the continuous tool-supported co-evolution of design models and
code even supports agile working in principle.

To enable broader practical application, a more lightweight traceability of security requirements and
features is needed. One solution could be to automatically create detailed trace models by monitoring
developer activities and recording traces according to their workflow. In this way, a detailed trace model
could be built from which semantically meaningful trace links could be derived. To avoid recording trace
links altogether, one could try to focus more on the security features themselves, as they are contained
in the design models and the implementation. Using design-time security languages such as UMLsec or
SecDFD, security features are explicitly modeled at an abstract level, for which the more concrete coun-
terparts must be identified in the implementation. There, many security aspects are explicitly accessible,
such as where a cryptographic API is used. Together with code structures and manual feature annota-
tions, this information could be lifted and compared to the security design, providing security traceability
without requiring specific development processes.

3.2 Coupling Design-time and Implementation-time Security

After being able to trace security requirements between the various artifacts created throughout the soft-
ware development lifecycle, we must select appropriate implementation-level security checks to verify the
implementation against the security design. To do this, we must bridge a significant gap between design-
time security and implementation-level security [7]. While the discussed design-time security techniques
rely on coarse-grained specifications of security requirements, current static security analyzers focus on
low-level security aspects, such as whether a cryptographic API is used securely. Currently, with the ex-
ception of the explicitly coupled checks discussed above, it is unclear which of the many existing security
analysis tools can verify which aspects of the security design. We need to find a common understanding
of security that is not specific to a single phase of the SDLC.

With such a common understanding, we can leverage the different aspects expressed in different
phases to further improve the effectiveness of implementation-level security checks. The planned security
design should serve as an additional source of information for tailoring implementation-level checks and
obtaining more accurate analysis results. For example, we have shown that we can automatically configure
implementation-level taint analysis, particularly with respect to where sensitive information enters and
where it is intended to exit the system, based on the information available in design models.

3.3 Integrated Security Compliance Checks throughout the SDLC

For handling undecidable implementation aspects such as dynamic class loading, Java reflection, or today
increasingly also the application of machine learning and reconfiguration, the introduction of safe guards
that are introduced and checked at runtime, is a frequent proposal. However, our experiences with runtime
monitoring show that monitoring everything does not scale well. The simple permission check concerning
UMLsec secure dependency, has shown on short-running benchmarks on average a slowdown of factor
3.2 for Java applications [9]. Even on a long-running web application, where the overhead due to class
loading has been relativized, the web application still shows 2ms higher response times. Still, dynamic
security checks at runtime cannot be avoided entirely.

To keep the overhead of dynamic security checks reasonable, we have to integrate verification in
the different phases of the development life cycle. Instead of checking everything dynamically, we have
to check as much as possible statically and check dynamically, whether the assumptions of the static
verification hold at runtime. Therefore, we have to identify the assumptions from previous phases that
we have to verify and what is new in the phase that has to be verified. This way, we avoid expensive
runtime verification and are even able to find and fix vulnerabilities early.

6



4 Conclusion

Verifying that software-intensive systems conform to their security design is essential to ensuring their
security. Due to the significant difference in abstraction between design-time security and implementation-
level security, this task currently has to be performed mainly manually, which makes it expensive, slow,
and error-prone. Here, automation of security compliance checks has the potential to improve all three
aspects, allowing for continuous security compliance checks. To this end, our previous work demonstrates
the principle feasibility of such automated security compliance checks. However, to realize our vision of
continuous automated security compliance checks, we still need to overcome the challenges outlined in
this paper. In particular, we need to bridge the huge gap between design-time and implementation-level
security. Therefore, we need to extract a common understanding of security that allows coupling these two
phases, and develop more lightweight traceability approaches. In addition, emerging technologies such as
machine learning and dynamically reconfigurable systems increase the problem of statically unanalyzable
implementation aspects and create a higher demand for dynamic security checks. We must strive for a
pipeline of integrated security checks that leverage the results of specifications and checks from previous
life cycle phases to effectively verify security compliance and detect violations early.

References

1. Experimental Security Research of Tesla Autopilot. Tech. rep., Tencent Keen Security Lab (2019)
2. Chattopadhyay, A., Lam, K., Tavva, Y.: Autonomous Vehicle: Security by Design. Transactions on Intelligent

Transportation Systems 22(11), 7015–7029 (2021). https://doi.org/10.1109/TITS.2020.3000797
3. Gruber, D.: Modern Application Development Security. Tech. rep., Enterprise Strategy Group

(2020), https://news.synopsys.com/2020-08-06-DevSecOps-Study-Finds-that-Nearly-Half-of-Organizations-
Consciously-Deploy-Vulnerable-Applications-Due-to-Time-Pressures, visited 2023-10-31

4. Jürjens, J.: Secure systems development with UML. Springer (2005). https://doi.org/10.1007/B137706
5. Krüger, S., Nadi, S., Reif, M., Ali, K., Mezini, M., Bodden, E., Göpfert, F., Günther, F., Weinert, C., Demmler,

D., Kamath, R.: CogniCrypt: Supporting Developers in using Cryptography. In: International Conference on
Automated Software Engineering (ASE). pp. 931–936 (2017). https://doi.org/10.1109/ASE.2017.8115707

6. Luo, P., Zou, D., Du, Y., Jin, H., Liu, C., Shen, J.: Static Detection of Real-World Buffer Overflow Induced
by Loop. Computers & Security 89 (2020). https://doi.org/10.1016/J.COSE.2019.101616

7. Peldszus, S.: Security Compliance in Model-driven Development of Software Systems in Presence of Long-term
Evolution and Variants. Ph.D. thesis, University of Koblenz and Landau (2022). https://doi.org/10.1007/978-
3-658-37665-9

8. Peldszus, S., Bürger, J., Kehrer, T., Jürjens, J.: Ontology-driven Evolution of Software Security. Data &
Knowledge Engineering (DKE) 134 (2021). https://doi.org/10.1016/J.DATAK.2021.101907

9. Peldszus, S., Bürger, J., Jürjens, J.: UMLsecRT: Reactive Security Monitoring of Java Applica-
tions with Round-Trip Engineering. Transactions on Software Engineering (TSE) (2023).
https://doi.org/10.1109/TSE.2023.3326366

10. Peldszus, S., Kulcsár, G., Lochau, M.: A Solution to the Java Refactoring Case Study using eMoflon. In:
Transformation Tool Contest (TTC). pp. 118–122 (2015)

11. Peldszus, S., Kulcsár, G., Lochau, M., Schulze, S.: Incremental Co-Evolution of Java Programs based on
Bidirectional Graph Transformation. In: Principles and Practices of Programming on The Java Platform
(PPPJ). pp. 138–151 (2015). https://doi.org/10.1145/2807426.2807438

12. Peldszus, S., Kulcsár, G., Lochau, M., Schulze, S.: Continuous Detection of Design Flaws in Evolving Object-
Oriented Programs using Incremental Multi-pattern Matching. In: International Conference on Automated
Software Engineering (ASE) (2016). https://doi.org/10.1145/2970276.2970338

13. Peldszus, S., Strüber, D., Jürjens, J.: Model-based Security Analysis of Feature-oriented Software Product
Lines. In: International Conference on Generative Programming: Concepts and Experiences (GPCE). pp.
93–106 (2018). https://doi.org/10.1145/3278122.3278126

14. Peldszus, S., Tuma, K., Strüber, D., Jürjens, J., Scandariato, R.: Secure Data-Flow Compliance Checks be-
tween Models and Code Based on Automated Mappings. In: International Conference on Model Driven Engi-
neering Languages and Systems (MODELS). pp. 23–33 (2019). https://doi.org/10.1109/MODELS.2019.00-18

15. Peng, Z., Yang, J., Chen, T.P., Ma, L.: A First Look at the Integration of Machine Learning Models in
Complex Autonomous Driving Systems: A Case Study on Apollo. In: Joint Meeting on the Foundations of
Software Engineering (ESEC/FSE). pp. 1240–1250 (2020). https://doi.org/10.1145/3368089.3417063

16. Shostack, A.: Threat Modeling: Designing for Security. Wiley (2014)
17. Tuma, K., Peldszus, S., Strüber, D., Scandariato, R., Jürjens, J.: Checking Security Compliance between Mod-

els and Code. Software & Systems Modeling (SoSyM) 22(1), 273–296 (2023). https://doi.org/10.1007/S10270-
022-00991-5

18. Tuma, K., Scandariato, R., Balliu, M.: Flaws in Flows: Unveiling Design Flaws via Information
Flow Analysis. In: International Conference on Software Architecture (ICSA). pp. 191–200 (2019).
https://doi.org/10.1109/ICSA.2019.00028

7



Rigorous Digital Engineering with Formal Methods
—

Extended Abstract for FoMSESS 2023

Frank Zeyda[0009−0009−4251−4740]

Independent Consultant (Galois, Inc.)
<first name>.<surname>{at}gmail.com

https://www.linkedin.com/in/frank-zeyda/

Abstract. This extended abstract accompanies a talk given by the author at the 2023 annual
meeting of the Fachgruppe Formale Methoden und Software Engineering für sichere Systeme1

(FoMSESS) in Germany. It is a reflection of the author’s personal experience and views that have
been shaped working as an independent consultant for safety/security-critical and trustworthy
systems for Galois in the U.S. In particular, it defines the notion of Rigorous Digital Engineering
(RDE) — a process and methodology that has been been shaped, adopted and refined by Galois
over dozens of projects to design and produce hardware and software systems where the highest
possible levels of assurance and trustworthiness are required.

1 What is RDE?

Rigorous Digital Engineer (RDE) is a methodology and process to create trustworthy, safe and secure
hardware and software systems ‘from the ground up’. It permeates the entire lifestyle of traditional
hardware, software and firmware engineering, from domain engineering and requirements elicitation
to models of product lines, architectural specifications, component and unit design, implementation,
all the way down to assurance and maintenance. Each lifestyle stage is accompanied by meaningful
models that support formal analysis, refinement, validation and verification activities, and ultimately
aid and increase our understanding of the system while providing tangle evidence, e.g., that all relevant
requirements have been captured, architectures satisfy safety and security properties, and implemen-
tations are correct with respect to their contractual specifications. RDE moreover ensures that that
models at different levels of abstraction remain tightly connected to each other via refinement, both
informally/semiformally and also in a strong mathematical sense where possible.

RDE has formed the basis of many projects at Galois, Inc. that require the highest degrees of
assurance, targeting embedded encryption devices, avionics, space and defense, and secure voting
systems — just to name a few. Despite this, the methodology and process of RDE has only recently
been clearly articulated at Galois due to Joe Kiniry’s vision and work as a process in its own right that
is moreover adaptable and can cater for a large class of heterogeneous systems, from pure software to
pure hardware and anything in between. The author has worked closely with Joe Kiniry over the last
year to produce a set of training and teaching materials for RDE that we expect to be made available
to a larger public audience in 2024, via a series of recorded video lectures. Irrespective of those plans,
RDE in various incarnations and evolutionary forms has been trialed and tested at Galois over two
decades now, and over and over again proving its value in producing systems that exhibited zero bugs
or security issues while in operation. Potential issues are often spotted and eradicated early on in the
lifecycle and design, thus resulting in substantial cost savings if those issues had to be addressed and
patched late during development or even post deployment [9].

8



Fig. 1. A subset of common RDE languages and their analysis tools.

2 RDE and Model-Based Engineering

The key ingredients of the RDE approach and philosophy are models. But we do not admin just any
model that comes or way, but have some requirements in terms of the utility and suitability of models.
These are in summary:

– the use of (preferably executable) models (with preferably known fidelity) to
– rigorously, authentically describe things
– at various levels of abstraction
– such that the models relate to each other in well understood ways
– and the models refine to bits or atoms
– and thus all of this connects to software, hardware, and systems engineering
– and we use the models to provide assurance of various kinds for the product line or product or

platform or system.

Fig. 1 presents an indicative subset of languages, modeling notations, and tools that are often em-
ployed in an RDE setting. Note that this diagram is not intended to be complete, and the particular
notations and analysis techniques adopted in a particular project depend on the nature of the system,
requirements of the client, desired level of assurance, and whether the project is software or hardware
centric, or situated in between. Moreover, some of the mentioned languages and tools such as Lando,
Lobot and Cryptol are Galois languages. Most of these are, however, available through open-sourced
projects and licenses [1,3,5]. All models and assurance techniques in Fig. 1 are strongly couple with
each other, through semiformal and formal notions of refinement where applicable.

The technology stacks supported thus far by the RDE methodology is far-reaching and extensive,
and not restricted to tools and languages for ‘hardcore’ formal methods. For instance, it includes:

– many different kinds of programming languages (procedural, object-oriented, functional, hardware,
logic, and mixed-model, such as C, C++, C#, Rust, Haskell, Java, Scala, Kotlin, Eiffel, Chisel,
Bluespec SystemVerilog (BSV), SystemVerilog, and VHDL);

1 Working group for formal methods and software engineering for safe systems

9



– specification and modeling languages (such as F∗, ACSL, JML, Code Contracts, Alloy, Z, VDM,
classical and Event-B, RAISE);

– architecture specification tools and languages (such as Cameo, Rhapsody, MagicDraw, OSATE,
Visual Paradigm and UML, SysML, and AADL, respectively)

– integrated development environments (such as Eclipse, Visual Studio, Visual Studio Code, and
IntelliJ IDEA)

– formal modeling and reasoning tools (such as Alloy, PVS, Coq, Isabelle, Lean, UPPAAL, CZT,
Overture, Rodin, Frama-C, Logika, SAW, Ivy, TLA Toolbox, FDR4, NuSMV, BLAST, and SPIN)

– operating systems (RTOS, UNIX variants, seL4, and so on)
– spans systems, hardware (ASIC and FPGA-based), firmware, and software

One of the key challenges for RDE is indeed to find appropriate ways to use modeling, design and im-
plementation languages in combination to extract the maximum value out of tools for formal analysis,
validation and static/run-time verification. Issues that are often neglected in pure formal methods are
given special attention in RDE, such as setting up a collaborative development environment (CDE)
with CI/CD/CV linked to formal analysis tools early on in the project, performing domain engineering,
and consequently using domain models as the basis for subsequent requirements specification, product
line engineering (PLE) and architectural design. The RDE notion of PLE shall not just include con-
cepts related to final software and hardware artifacts, but also security and threat models, assurance
activities, and elements/artifacts of model-based static and dynamic architectures.

3 RDE and Formal Methods

Applying formal methods in RDE is about the practical application of formal methods to all stages
of a system’s lifecycle: process, methodology, domain, requirements, design, refinement, development,
assurance, maintenance, and evolution. Moreover, we hold no bias in choice of formal method, tool,
or technology: just choose the right tool for the job. RDE, especially in conjunction with industrial
clients, often focuses on finding key places where small changes to the lifecycle have large impact, and
nearly always hides formalism from the typical user à la Secret Ninja Formal Methods (SNFM) [8].

To give an example of the scope of RDE assurance, we consider the High Assurance Rigorous
Digital Engineering for Nuclear Safety (HARDENS) [4] project which is publicly available on GitHub.
The project considers the development of an Digital Instrumentation and Control (DI&C) system for
Nuclear Power Plants, namely of a Reactor Trip System (RTS). The following assurance evidence has
been produced for the final system implementation, see [7] for more details:

– critical components of the RTS are automatically synthesized from the Cryptol [3] model into both
formally verifiable C implementations and formally verifiable System Verilog implementations;

– automatically generated C code and handwritten implementations of the same models are used to
fulfill safety-critical redundancy and fault-tolerance requirements, and all of those implementations
are formally verified both against their model, and verified against each other as being equivalent,
using Frama-C and Galois’s SAW [5] tool;

– the RISC-V CPU is formally verified against the RISC-V ISA specification using the Yosys open
source verification tool;

– the RISC-V-based SoC is rigorously assured against the automatically generated end-to-end test
bench;

– the formal requirements specified in FRET are formally verified for consistency, completeness, and
realizability using SAT and SMT solvers;

– the refinement of these requirements into Cryptol properties are used as model validation theorems
to rigorously check and formally verifying that the Cryptol model conforms to the requirements,
the Cryptol model is used to automatically generate a component-level and

– end-to-end test bench (in C) for the entire system, and that test bench is executed on all digital
twins and (soon) the full hardware implementation as well, and

10



– all models and assurance artifacts are traceable and sit in a semiformal refinement hierarchy that
spans semiformal system specification written in precise natural language all of the way down for
formally assured source code (in verifiable C), binaries, and hardware designs in System Verilog
and Bluespec System Verilog (BSV).

Similar RDE example projects are available via the https://github.com/GaloisInc organization on
GitLab, as well as implementations of RDE-specific languages and tools that those projects benefit
from. Another notable one is the BESSPIN project (https://github.com/GaloisInc/BESSPIN) [2]
funded by DARPA’s SSITH program. BESSPIN aimed to develop (i) a set of quantitative metrics that
would support practical measurement of security property compliance, enabling objective trade-offs
between security and other system properties; (ii) a framework in which security architectures and their
properties could be expressed and reasoned about, both at the abstract (model) level and the concrete
(product) level; and (iii) a methodology in which metrics would drive decision making during the
design of secure systems, particularly with regard to making informed, evidence-based hardware and
firmware design trade-offs among security and other characteristics such as performance, power, and
area. To achieve these goals, BESSPIN, like HARDENS relied heavily on RDE techniques and includes
a product line of formally verified RISC-V soft-core CPUs developed to high assurance standards.

4 Conclusion

While RDE is built on strong principles, it is not a rigid and fixed methodology and is currently being
evolved into several new directions, including the use of generative A.I. and large language models
(LLMs) in order to ease the burden of writing, for instance, domain models or identifying security
threats. Rather than using a single formal method to rule them all, RDE recommends making most of
existing techniques that are available, and finding sound and meaningful ways to use these techniques in
combination. This does raise some challenges and concerns in relating models and artifacts at different
levels of abstraction throughout the lifecycle. We consider the use of Hoare and He’s Unifying Theories
of Programming [6] a key enabler to alleviate this issue in the future and provide a shared semantic
foundation in which all the languages and modeling notations in Fig. 1 can live in harmony.

References

1. Galois, Inc. The BESSPIN Lando System Specification Sublanguage. GitHub project repository, July 2019.
Available at: https://github.com/GaloisInc/BESSPIN-Lando.

2. Galois, Inc. Balancing the Evaluation of System Security Properties with Industrial Needs (BESSPIN).
GitHub project repository, May 2021. Available at: https://github.com/GaloisInc/BESSPIN.

3. Galois, Inc. Cryptol: The Language of Cryptography (version 3). GitHub project repository, June 2023.
Available at: https://github.com/GaloisInc/cryptol.

4. Galois, Inc. High Assurance Rigorous Digital Engineering for Nuclear Safety (HARDENS). GitHub project
repository, February 2023. Available at: https://github.com/GaloisInc/HARDENS.

5. Galois, Inc. The Software Analysis Workbench (v1.0). GitHub project repository, June 2023. Available at:
https://github.com/GaloisInc/saw-script.

6. Tony Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall Series in Computer Science.
Prentice Hall, Upper Saddle River, NJ, USA, April 1998. Out of print now. But the book content is freely
available at http://www.unifyingtheories.org/.

7. Joseph Kiniry, Alexander Bakst, Simon Hansen, Michal Podhradsky, and Andrew Bivin. The HARDENS
Final Report. Technical report, Galois, Inc., January 2023. See: https://github.com/GaloisInc/HARDENS/
blob/54ac1d87267dff1311111603fa2925bc0197eb1d/docs/HARDENS_Final_Report_Jan_2023.pdf.

8. Joseph R. Kiniry and Daniel M. Zimmerman. Secret Ninja Formal Methods. In FM 2008: Formal Methods,
Proceedings of the 15th International Symposium on Formal Methods, volume 5014 of LNCS, pages 214–228.
Springer, May 2008. DOI: 10.1007/978-3-540-68237-0 16.

9. Colin O’Halloran. Where Is the Value in a Program Verifier? In Verified Software: Theories, Tools, Exper-
iments, Proceedings of VSTTE 2008, volume 5295 of LNCS, pages 255–262. Springer, October 2008. DOI:
10.1007/978-3-540-87873-5 21.

11


