
FoMSESS Jahrestagung 2022

Extended Abstracts



Die Fachgruppe FoMSESS1 im GI-Fachbereich Sicherheit beschäftigt sich mit der Anwendung von For-
malen Methoden und Software Engineering in der Entwicklung sicherer Systeme.
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A Manifesto for Applicable Formal Methods – Extended Abstract

Mario Gleirscher, Universität Bremen

October 12, 2022

The successful use of formal methods in critical systems practice is far from many researchers’ and
practitioners’ hopes and expectations. This observation seems alarming inasmuch as formal methods
have long been advocated as one of the best paradigms to construct or assess dependable systems. One
could thus expect these methods to be in wide-spread use for engineering critical systems. Unsurprisingly,
the formal methods and software engineering communities have led a regular debate over the past four
decades about the various causes for the observed lack of formal methods transfer and use.

In a literature survey combined with a SWOT analysis—an analysis of Strengths, Weaknesses, Oppor-
tunities, and Threats—, we summarise research on the potential causes and highlight key opportunities
for employing the formal methods paradigm to the maximum benefit, for example, by increasing the level
of method integration (Gleirscher, Foster, et al. 2019). Our practitioner survey (Gleirscher and Marm-
soler 2020) extends this assessment of the phenomenon by two key findings from self-reported empirical
data. Firstly, the survey respondents—to a large extent formal methods users from industry—indicate an
intent to increase their use of these methods. Secondly, however, our respondents also suggest that the
applicability of these methods, whether or not by using the corresponding tools, is still insufficient for
them to unfold their full potential. The respondents confirm known and identify new obstacles to the
transfer and use of formal methods. Our results suggest new research directions.

Based on our assessments, we revisited the concept of applicable formal methods, organised a
workshop1 to revitalise the currently rather scattered community of inclined researchers, and developed
a proposal in the form of a Manifesto for Applicable Formal Methods (Gleirscher, van de Pol, et al.
2021). We hope that the manifesto fosters the development of a worldwide community of researchers and
practitioners devoted to enhancing the available methods and tools in support of the principles proposed
and impacts envisaged by the manifesto and, ultimately, to intensify the use of these methods.

In a recent working paper (Gleirscher, Sachtleben, et al. 2022), we evaluate the state of the art of tool
qualification for formal methods, that is, approaches to increasing the dependability and explainability—
one of the manifesto’s principles—of tools supporting the application of certain formal methods, such as
proof assistants, model checkers, and certified compilers. We develop a position about the next steps in
this direction, focusing on what is known as artefact-based tool qualification.
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Abstract. Neural networks are increasingly applied in safety critical
domains like self-driving cars and collision avoidance for aircraft, where
errors can have severe consequences. This necessitates provable guaran-
tees about their behaviour and has made the development of dedicated
veri�cation algorithms an active area of research. I characterize situa-
tions where machine learning is usually applied and talk about what can
be veri�ed under these circumstances. This is followed by a brief overview
of di�erent proposed veri�cation algorithms, before I focus on one suc-
cessful method - symbolic interval propagation. Furthermore, I present
various optimizations that help to increase veri�cation performance.

1 Introduction

Nowadays neural networks (NNs) achieve state-of-the-art performance for many
machine learning tasks such as mastering the games of chess and go [Si18a] or
image recognition [Yu22]. Their successes have led to the application of NNs
in sensitive and even safety-critical domains like crime prediction [BDE09] and
autonomous driving [Bo16] or airborne collision avoidance [Ju16].

In order to provide much needed guarantees about the behaviour of NNs,
researchers in the �eld of NN veri�cation have developed powerful techniques to
formally prove or disprove various properties of trained NNs.

In this extended abstract, we �rst present a characterization of general sce-
narios where NNs or machine learning in general are applied and what properties
can be veri�ed in these cases. Then we continue with a brief overview of exist-
ing methods for NN veri�cation, before we speci�cally concentrate on symbolic

interval propagation and various optimizations that we proposed in [KBS22] to
enhance the performance of this technique.

2 Use Cases and Applicable Veri�cation Properties

In some use cases such as image recognition, a mathematical formulation of the
desired property (e.g. this image represents a stop sign) is at very complicated, if
not impossible to de�ne. This lack of a closed-form formal model often is even the
main reason, why machine learning methods are applied to a speci�c problem.
While a way to specify the exact property one wants to verify (e.g. that every
image of a stop sign is correctly classi�ed as a stop sign) might not be known,
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it is still possible to verify necessary conditions [Eh19]. In the context of image
recognition for example adversarial robustness [Sz13]

∀x : ∥x0 − x∥ ≤ ε ∧NN(x0) = y ⇒ NN(x) = y (1)

speci�es that all images in an ε-neighbourhood (with ε so small that humans will
not notice a di�erence to x0) around some initial image x0 need to be classi�ed
as belonging to the same class y as x0.

When NNs are used to replace existing algorithms in order to achieve faster
runtime or smaller memory consumption [Ju16], one can simply check the NN
against existing speci�cation of the replaced algorithm [Eh19].

Large NNs themselves, however, might also be expensive to execute or require
large amounts of memory prohibiting their use on edge devices like smart phones
or embedded systems. To solve this problem, several methods have been proposed
to obtain a reduced-size NN R from a larger NN N without sacri�cing too much
performance. A useful property in these cases is the veri�cation of ε-equivalence
[PWW20,Pa20,KBKS20,TKBS21]: Proving that the outputs of R and N only
di�er by at most some small constant ε over inputs in a given region x ∈ X . By
proving one-hot equivalence [KBKS20], we can also verify whether the outputs
of R and N correspond to the same classi�cation result.

Concerning the application of NNs in sensitive domains like prediction of
credit scores or crime, the authors of [KS22] for example focus on verifying
global individual fairness to ensure that the NN does not discriminate against
minority groups based on protected attributes like race or gender.

3 Veri�cation Techniques

All properties presented in the previous section can be written in the typical
form of a NN veri�cation problem, which can be phrased as the satis�ability
problem

∃x,y.x ∈ P ∧ y = NN(x) ∧ y ∈ Q , (2)

where P and Q are polytopes. This problem is decidable for feed-forward ReLU-
NNs (and δ-decidable for feed-forward NNs with sigmoidal activation functions
[Iv19]), but unfortunately the problem is also NP-complete [Ka17].

Nevertheless, e�cient algorithms for the solution of the problem have been
proposed in recent years � also stimulated by a yearly competition [BLJ21]. We
can roughly classify them into methods primarily based on optimization and
methods primarily based on abstract interpretation although most algorithms
make use of both techniques to a di�erent extent.

Methods using abstract interpretation propagate an input set X through a
NN using di�erent abstract domains like zonotopes [Si18b,St21], convex starsets
[Ba20] or symbolic intervals [Wa18b,Wa18a,Si19] to obtain an overapproxima-
tion Y ⊇ NN(X of the reachable output set. If the emptiness of the intersection
of a forbidden set F and Y can be determined, the property is guaranteed to
hold, whereas an input point x ∈ X for which NN(x) ∈ F constitutes a coun-
terexample.
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Optimization-based approaches typically maximize the violation vC(x) of a
constraint C for inputs x ∈ X of the NN using for example mixed integer linear
programming (MILP) [CNR17,KBKS20] or semide�nite programming [Da20]. If
a bound on the maximal value of v∗C = maxx∈X vC(x) ≤ 0 can be found, the
constraint is guaranteed to hold. On the other hand, any input x ∈ X with
vC(x) > 0 constitutes a counterexample to the validity of the constraint.

Usually both abstract interpretation- and optimization-based approaches can
e�ciently handle the a�ne operations in NNs like matrix multiplications or
propagation through �xed-active or �xed-inactive ReLU functions, but loose
precision or require re�nement steps for unstable ReLUs, if the current property
could neither be veri�ed nor disproven. The size of the NN as well as the size of
the input domain have a large in�uence on the number of unstable ReLUs, and
therefore on required veri�cation time.

3.1 Symbolic Interval Propagation

Symbolic interval propagation is an abstract-interpretation technique that prop-
agates a hyperrectangular input set X = [x,x] ⊆ Rn through a NN. In contrast
to traditional interval arithmetic, the reachable sets for intermediate neurons ni

are not represented by intervals of concrete numbers ni ∈ [ni, ni], ni, ni ∈ R, but
by symbolic intervals of a�ne functions [l(x), u(x)] in the input variables such
that l(x) = l0+

∑n
i=1 lixi, u(x) = u0+

∑n
i=1 uixi and l(x) ≤ ni ≤ u(x),∀x ∈ X .

A concrete upper bound ni for ni can be obtained by substituting the lower
bounds xi for inputs with negative coe�cients in u(x) and the upper bounds
upxi for inputs with positive coe�cients in u(x). For a concrete lower bound,
one needs to substitute the appropriate input bounds according to the coe�-
cients in l(x). Since each input xi only appears once u(x) (and l(x)), we never
use both xi and xi simultaneously, when computing a concrete upper bound (or
lower bound), which alleviates the dependency issue with respect to the input
variables compared to traditional interval arithmetic.

However, we might still implicitly use both the symbolic lower and upper
bound l(x) and u(x) of an intermediate neuron ni, when computing the sym-
bolic bounds of later neurons. While there are methods that alleviate this prob-
lem [Si18b,Si19,Zh18], they either restricted to parallel relaxations of unstable
ReLU-neurons or require a quadratic number of backsubstitution passes. Sym-
bolic interval propagation with the introduction of fresh variables for unstable
neurons [Pa20] on the other hand, also reduces the dependency problem, while
still allowing for non-parallel ReLU relaxations and only requiring a single sym-
bolic forward pass. In order to avoid multiple backsubstitutions, however, the
bounds of the introduced fresh variables need to be stored in terms of the in-
put variables, which leads to a loss of symbolic information, if too many fresh
variables are introduced.

In our work [KBS22], we therefore only introduce a �xed number of fresh
variables and for at most a fraction of λ of the neurons of each layer of an NN.
Furthermore, we prioritize introduction of fresh variables for neurons whose con-
crete lower and upper bounds are far apart, with the intuition that implicitly
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utilizing both the symbolic lower and upper bounds of these neurons would yield
worse bounds later on than utilizing both bounds, when they are only slightly
di�erent. Additionally, we utilize information about the in�uence of an input xi

on the bounds of unstable intermediate neurons to guide our re�nement process
based on branch-and-bound on the input domain. Instead of just splitting the
input xi of the NN with the largest range xi − xi, we obtain a splitting score by
multiplying the range with the sum of the absolute values of the coe�cients of xi

in the lower and upper symbolic bounds l(x) and u(x) of unstable neurons and
bisect the input with the largest splitting score. Similarly, we also use information
from the symbolic bounds for faster counterexample generation. Instead of just
sampling the center point of the current input hyperrectangle, we calculate the
symbolic upper bound on the violation of the property to prove and use the in-
put that maximizes this symbolic upper bound as a counterexample-candidate.
Our method performs well especially on medium sized neural networks with
low dimensional input space. Therefore we evaluated our implementation DP-
NeurifyFV

1 of this optimized approach on the popular ACAS Xu benchmark
suite [Ju16] containing 45 networks with 5 inputs and 300 neurons each and
showed signi�cant runtime improvements compared to the state-of-the-art tools
ZoPE[St21] and nnenum[Ba20].

4 Conclusion

Nowadays, NNs are already applied in safety-critical and sensitive areas like au-
tomated driving or credit score prediction. Therefore provable guarantees about
the behaviour of such NNs are necessary. Even if we do not have full speci�cations
of the desired properties, useful properties can still be formulated. This includes
necessary conditions, partial speci�cations, fairness properties and equivalence
between two NNs. Furthermore the problem of NN veri�cation is decidable for
feed-forward NNs with ReLU activation functions and we have seen several al-
gorithms that are capable of verifying small to medium-sized NNs dependent on
the property to verify (especially considering the size of the input set).

However, the problem of NN veri�cation is far from being completely solved.
As NNs become ever larger, scalability to those large models constitutes a major
challenge to veri�cation algorithms. Furthermore, although we have seen that
useful properties can be formulated, we still cannot accurately capture many
of the properties that we actually would like to verify. Major research e�ort is
required to make progress in that direction.
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1University of Duisburg-Essen, Essen, Germany
2University of Amsterdam, Amsterdam, Netherlands

October 30, 2022

Abstract

Data processing systems operate in increasingly dynamic environments. In such environments,
changes at run time can result in the dynamic appearance of data protection vulnerabilities. An
autonomous system can mitigate such vulnerabilities by means of automated self-adaptations.
If there are several data protection vulnerabilities at the same time, the system has to decide
which ones to address first. We propose an approach to automatically quantify and prioritize
data protection vulnerabilities at run time. Full details on our approach including, e.g., the
mathematical model, and the experiments performed can be found in [ZLM22]. The follow-
ing summary presents the motivation behind our approach, our the main idea, and selected
evaluation results.

1 Introduction

An increasing number of software applications process personal data, raising concerns about
data protection [Rub13, And14]. This is mirrored by recent data protection regulation, such as
the General Data Protection Regulation (GDPR) of the European Union (EU). Data protection
covers several aspects of security and privacy. In particular, a key data protection requirement
is that personal data should only be accessible by authorized actors [TMM+20].
Software can be made reasonably secure by design for a known and stable environment. How-

ever, data processing systems, increasingly often, operate in increasingly dynamic environments,
such as in cloud or edge computing. In such environments, changes at run time can result in the
dynamic appearance of data protection vulnerabilities, i.e., configurations in which an attacker
could gain unauthorized access to confidential data. An autonomous system can mitigate such
vulnerabilities by means of automated self-adaptations (see e.g., [MKL+21]. If there are several
vulnerabilities at the same time, the system has to decide which ones to address first.
In other areas of cybersecurity, risk-based approaches have proven useful for prioritizing where

to focus efforts for increasing security. Traditionally, risk assessment is a manual and time-
consuming process. On the other hand, addressing run-time risks requires timely decision-
making, which in turn necessitates automated risk assessment.
We propose an approach for automatically quantifying the risks associated with data protec-

tion vulnerabilities arising at run time. Our approach is based on a new mathematical model
that formalizes the key properties of data protection vulnerabilities: the dependence of the
caused damage on the type and amount of the involved data and on the time that elapsed since
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the vulnerability arose. This model allows us to automatically compute the risk values of vul-
nerabilities, and thus to prioritize the vulnerabilities based on risk. We implement our approach
as an extension to the RADAR self-adaptive data protection system [MKL+21].

2 Context

The research presented in this paper is performed in the context of RADAR, an approach
for ensuring data protection in systems that are exposed to changes at run time [MKL+21].
RADAR automatically identifies data protection vulnerabilities at run time and determines the
best adaptations to keep data protected. A data protection vulnerability is a configuration of
the system and its environment, in which an attacker may gain unauthorized access to some
confidential data. RADAR serves as an example system to motivate and validate our approach.
However, our approach could also be integrated into other systems that detect and mitigate
data protection vulnerabilities.
RADAR uses an adaptation planning algorithm to identify the best adaptation. The algorithm

needs to take into account that there may be multiple vulnerabilities, there may be multiple
adaptations to mitigate a vulnerability, and an adaptation to mitigate a vulnerability may also
mitigate or create other vulnerabilities. A sequence of adaptations may be needed to mitigate
all vulnerabilities. In this sequence, the order of the adaptations may be important because an
adaptation may become applicable only after another adaptation was carried out.
Searching for the best adaptation sequence can be time-consuming. While RADAR is search-

ing, an attacker could already exploit the vulnerabilities. Therefore, the search is only allowed
for a limited time (10 seconds in [MKL+21]). RADAR tries to mitigate as many vulnerabilities
as possible in the given time frame. However, RADAR is lacking the intelligence to know which
vulnerabilities are more important or more urgent than others.

3 Proposed Approach

The aim of our approach is to quantify the risk associated with data protection vulnerabilities
in a system. In the following, we summarize the idea behind our approach. More details can be
found in [ZLM22].

time

damage

vulnerability 
appears (t0)

exploit
starts

exploit 
complete

vulnerability 
is found

𝐷 = 𝑛 ∙ 𝛿X

𝑛 ∙ 𝑌

Figure 1: Damage caused by an attack

A data protection vulnerability is a
special kind of security vulnerability,
with some typical properties. First, the
damage caused by an attack depends
on the type of data (e.g., in a hospi-
tal, patients’ health data is more sen-
sitive than inventory data) and on the
amount of data (the more data is stolen,
the higher the damage). Second, ex-
ploiting a data protection vulnerability
takes time. This includes time to detect
the existence of the vulnerability, time
to prepare an attack, and time to steal
each data item. The time for stealing
the whole data set depends on the size
of the data set. Third, once the attacker has stolen the data, the damage cannot be undone.
To account for these properties, Fig. 1 sketches our model of how the caused damage changes

with time. The model can be seen as the impact of the cyber kill chain [YR15] on data protection.
From the moment that a vulnerability appears, it takes the attacker some time to detect the
vulnerability and then to prepare an exploit. The time to detect the vulnerability and to prepare
the exploit may be very short if the vulnerability is easily detected / exploited, but it may also
be long for more intricate vulnerabilities. These preparatory steps of the attacker do not cause
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damage. During the exploit, the damage increases linearly with time, as proportionately more
and more data is stolen. When all data is stolen, the damage reaches its maximum, and it stays
at that level.
Our attack model is primarily aimed at modeling attacks against the confidentiality of data.

Other types of attacks, for example against the availability of data (e.g., ransomware attacks)
could also follow a similar pattern, and could thus be amenable to similar reasoning, but we
leave this for future research.
Our approach is not to wait until an attack actually happens. As soon as the vulnerability

appears, the defender can start reasoning about possible attacks to exploit the vulnerability,
making it possible to proactively mitigate the risk of such an attack. The defender can use the
general model of Fig. 1, but without knowing the exact parameters (e.g., how long the attacker
will need to detect the vulnerability). Rather, the defender can perform a probabilistic analysis,
as described next, to reason about the risks.
Let us consider a data protection vulnerability, i.e., a vulnerability that potentially allows an

attacker to gain access to a confidential dataset containing n items. The maximum damage that
an attacker can cause is D = n · δ, corresponding to the case when the attacker manages to
steal the whole dataset. Here, δ > 0 is a given constant, corresponding to the damage caused
by stealing one data item, and thus defining how valuable the data in the given dataset is.
Let t0 denote the point in time when the vulnerability appears. Let the random variable X

denote the time it takes an attacker to start exploiting the vulnerability. (In Fig. 1, X is the
total time for noticing the vulnerability and preparing the exploit.) Let the random variable Y
denote the time it takes the attacker, after the exploit started, to steal one data item. Let t
denote the time that elapsed since t0. The damage caused by the attacker during this time is,
as can be seen from Fig. 1:

dn(t) =





0 if t < X
t−X
Y · δ if X ≤ t < X + n · Y

D if t ≥ X + n · Y
(1)

Note that, since X and Y are random variables, so is dn(t).
By focusing on the expected damage in the next period of time, we obtain the right metric for

risk prioritization. We disregard the already incurred damage, which is a sunken cost, and thus
should not influence the decision-making. We also disregard damage that will be incurred in the
far future because that damage can be avoided regardless of how current risks are prioritized.
To prioritize vulnerabiltiies we propose two algorithms: The first one is using Monte Carlo

sampling for different n and t values in a preprocessing step, the second one is used to quantify
the risk of a vulnerability at run time. Note that run-time changes of n or t may lead to a new
risk value for the same vulnerability.

4 Evaluation

We experimentally evaluate the integration of our method into RADAR and compare three
different prioritization methods. These are NoPrioritiziation (NoPrio for short) since all vulner-
abilities are considered equal, LocalPrioritization (LocalPrio), and GlobalPriotization (Global-
Prio). LocalPrio is to eliminate the vulnerabilities with the highest risk value first, and then
continuing in descending order of risk value. The idea of GlobalPrio is to minimize the sum of
the risk values of the vulnerabilities in the system configuration.
For the experiment, we use a system representation based on a project partner’s real cloud

system, which was multiplied 21 times around a central object [MKL+21]. This initial run-time
model does not contain any vulnerabilities. In a controlled scenario multiple vulnerabilities are
added to the system be performing system modifications. In some experiments, all vulnerabilities
are injected at once. In others, the injection of vulnerabilities occurs in two phases to simulate
the coexistence of older and newer vulnerabilities.
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Figure 2: Results for 100 runs of the experiment

In a first experiment, we show how RADAR
prioritizes the mitigation of different vulnera-
bilities. Newer vulnerabilities are prioritized
over older ones. The older vulnerabilities are
already almost completely exploited, which re-
sults in lower potential damage for the future
and thus in a lower risk value than the newer
ones, which are associated with higher poten-
tial future damage1.
Fig. 2 compares the results for the differ-

ent prioritization methods in a boxplot. We
group the vulnerabilities by δ and report the
total damage for these groups. In addition,
the total damage for all vulnerabilities is also
shown. The jagged line between 5,000,000 and
20,000,000 shows a break in the values of the
vertical axis, as no damage values in this range
were recorded and thus this range was cut
out to increase readability. Further experi-
ments show the respective impact of the im-
portant parameters δ, dataset size, and older
vs. newer vulnerabilities.
All in all, GlobalPrio and LocalPrio lead to

similar results while NoPrio performs signifi-
cantly worse. Our approach allows the prioritization of risks, resulting in up to 15.8% reduction
in damage.
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Abstract

Authentication systems are a major concern for the usable security and privacy community.
Twenty years ago, the seminal work “Users Are Not The Enemy” [1] by Adams and Sasse initiated
a user-centred approach to research. This work was followed by extensive research on end users’
security behavior around authentication systems, which resulted in many suggestions for improve-
ment. Many of these proposals were passed on to software developers, who were considered experts
who should know better and were expected to address the issues. However, the related work “De-
velopers Are Not The Enemy” [2] by Green and Smith, citing Adams and Sasse [1], points out
that, similar to end users, developers are usually not security experts. Thus, they also struggle
with usability and security issues. This is highlighted by the high number of reported security
breaches that have compromised millions of end-user passwords. In fact, much of the work invested
in usable authentication systems might be in vain if software developers fail to securely store user
passwords in databases.

Motivated by the recent security breaches, Naiakshina et al. [3, 4, 5, 6] provided deeper in-
sights into developers’ security behavior to clarify why software developers so often fail to store
user passwords securely. For this, a Java-based password-storage study was conducted with differ-
ent samples of developers: computer science (CS) students [3, 4], freelancers [5], and professional
developers employed by different companies [6]. Participants were instructed to complete the reg-
istration functionalities for a social network platform. To investigate whether software developers
think about security without prompting, half the participants were told the study was about ap-
plication programming interface (API) usability (non-prompted for security), while the other half
were specifically instructed to securely store user passwords (prompted for security). The study
also investigated whether an API’s level of password storage security support affects developers’
security behavior. Thus, half the participants used a framework offering opt-in support for se-
cure password storage (Spring), while the other half were provided a programming frame with
JavaServer Faces (JSF), which required them to implement password storage security without
support.

Initially, a qualitative and a quantitative study were conducted with 20/40 CS students from
the University of Bonn in a laboratory setting [3, 4]. The most important finding of this study
was that all the students who were not prompted for security submitted solutions in which user
passwords were stored in plaintext in the database. Furthermore, a number of the prompted par-
ticipants who considered password storage security still chose weak security practices. However,
some participants claimed that they would have stored user passwords securely in the database if
they were solving the task for a real company. In order to test whether these findings were a study
artifact, a follow-up study was conducted with 43 freelancers recruited via Freelancer.com [5]. A
pilot study with the freelancers suggested that a university context might lead them to believe that
university students were hiring them to do their homework. Therefore, this time, the freelancers
were not informed that the study was conducted by a research team. Instead, they were told
that they were working for a start-up that had lost recently a developer from their team. In this
study, freelancers behaved similarly to students with regard to user password storage. Freelancers
also had often misconceptions about secure password storage and chose weak practices. Finally,
36 company developers were invited to take part in a password-storage study [6]. They were re-
cruited through their companies and also via the German business social platform Xing. Company
developers submitted significantly more secure solutions than students, and they also chose signif-
icantly better password storage parameters than students or freelancers. Thus, in absolute terms,
they performed better than students and freelancers. However, in relative terms, the results were
similar: Security prompting and framework had a significant effect on password storage security
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for all samples. When prompted, more participants submitted secure solutions, and participants
made better parameter choices for password storage security when they used Spring instead of
JSF (freelancers used only JSF and thus were not tested for the variable framework).

Additionally, the four studies offered insights for the ecological validity of security studies
with developers. The student studies provided an early indication that qualitative research might
reveal essential insights without the need to conduct quantitative studies for specific use cases.
Furthermore, if the usable security and privacy community is more interested in how security
systems can be improved than in which developer group performs best, it might be valid to
conduct studies with students rather than professionals. What is more, freelancers tended to
behave similarly to students with regard to secure password storage, although they were not aware
of the purpose of the study. This suggests that participants tended to ignore the security aspects
of software even when working on a web application intended for the use in the real world.

A website provided by a trustworthy authority with state-of-the-art, ready-to-use security
code might improve software security by taking the burden off developers. To aid developers in
creating secure code for password-based authentication, Geierhaas et al. [7] developed and tested
a programming resource, Let’s Hash. Using Let’s Hash, participants were between 5 and 32 times
more likely to create secure code than those using their regular resources.
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