FoMSESS Annual Meeting 2016, Duisburg 17<sup>th</sup> – 18<sup>th</sup> February

# **I-MAKS**

### Formalizing Information Flow Properties in Isabelle/HOL

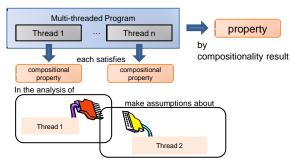
### Markus Tasch

Joint work with: Heiko Mantel, Henning Sudbrock, Sylvia Grewe, Steffen Lortz & Richard Gay

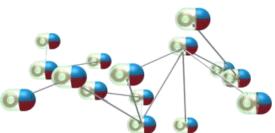
Modeling and Analysis of Information Systems (MAIS), TU Darmstadt, Germany

> TECHNISCHE UNIVERSITÄT DARMSTADT




# Modeling & Analysis of Information Systems

Chair at TU Darmstadt led by Heiko Mantel



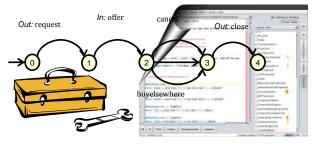

### **Selected Research Topics**

#### **Concurrency & Parallelism**



#### **Runtime Monitoring**




#### **Side Channel Analysis & Mitigation**



#### Static Program Analysis



#### **Security Engineering**



### Modeling & Analysis of Information Systems Chair at TU Darmstadt led by Heiko Mantel

### **Selected Projects**



**Reliable Secure Software Systems** 



CRISP

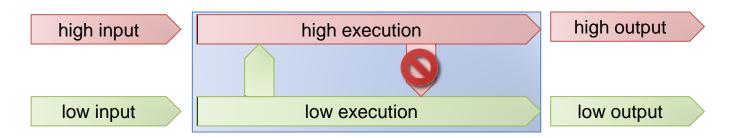
Center for Research in Security and Privacy





Center for Advanced Security Research Darmstadt

Center for Research in Security and Privacy


Cryptography-Based Security Solutions: Enabling Trust in New and Next Generation Computing Environments

European Center for Security and Privacy by Design

© Markus Tasch 2016

# **Possibilistic Information Flow**

[Goguen/Meseguer '82]



#### System is split in two security domains

- High: Confidential part of the system invisible to the attacker
- Low: Non-confidential part of the system visible to the attacker

#### When is a system possibilistic secure?

 Each low execution of the system can be explained by multiple high executions such that no confidential information can be deduced

#### How to define confidential information for a system?

How to guarantee possibilistic information flow security?



## I-MAKS

An extendable tool for possibilistic information flow that allows to ...

- specify your system as an event structure.
- tailor your security requirement.
- verify security in a unified way.

#### I-MAKS directly benefits from its ...

- conceptual basis: MAKS in its version from [Man03]
- technical basis: the Isabelle/HOL theorem prover [NPW02]



© Markus Tasch 2016

I-MAKS allows machine-aided specification & verification of possibilistic information flow!



### MAKS [Mantel '00, '03]

### **Modular Assembly Kit for Security Properties**

- Uniform framework for the specification & verification of information flow properties
- MAKS provides …



- support for event-based system models
- building blocks for the definition of information flow properties
- compositionality and unwinding results

Tailor your security property, verify the security of your system components and obtain the security of the whole system for free!

### MAKS keeps evolving ...

 it is used and adapted by scientists around the world Deepak D'Souza [DSHKRS08, DSHRS11], Dieter Hutter [HS04, Hut06, HMSS08], Ketil Stølen [SS06, SS09], ...

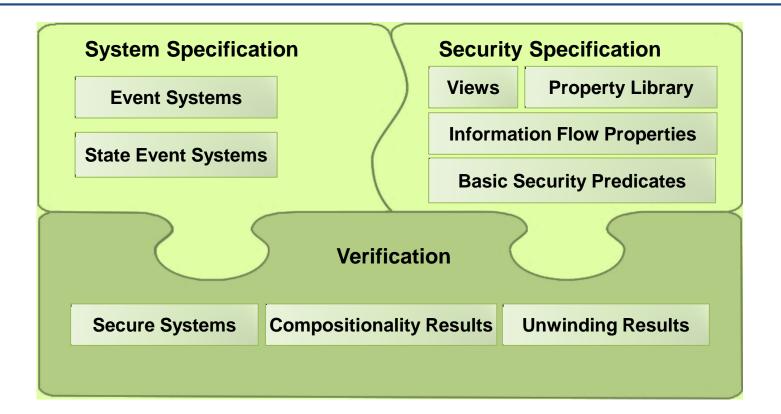


# Isabelle/HOL

[Nipkow/Paulson/Wenzel '02]

#### **Proof Assistant with support for**

- reasoning about meta-theory
- reasoning in higher order logic
- reasoning in first order logic




#### Relevant for this talk ...

- definitions of terms and functions (keyword definition)
- record types, i.e, tuples with named fields (keyword record)
  - as notational convention  $F_S$  denotes the field F of the record S
- Ibraries for lists and sets (parametric types 'e set and 'e list)
  - empty list [], cons (x # xs), concatenation [a,b,c]@[d,e]
  - empty set { }, union ∪, intersection ∩, setminus –



## **Overview of I-MAKS**



System Specification: Concepts to define security properties



- Security Specification: Supported systems models
- **Verification:** Verification techniques and helpful results

8

## I-MAKS – Preliminaries

#### **Events**

- Events are terms that model an atomic action of a system
- In Isabelle/HOL: Formalized by a type `e

#### Traces

- Traces are lists of events that model the behavior of a system
- In Isabelle/HOL: Formalized by instances of the type `e list

### **Projection**

- Removes all events from a given trace that are not in a given set of events
- In Isabelle/HOL defined as filter on a given list (abbreviated by ↾)
  - Example: [] ` {a,c} = [] and [a,b,c] ` {a,c} = [a,c]



9

## Views

#### Attacker Model (Observer)

- Partial view on the system's execution
  - i.e, can only observe a subset of events
- Goal: Fill gaps with confidential system behavior

#### Formalization in I-MAKS

record 'e V\_rec = V :: " 'e set" N :: "'e set" C :: "'e set"

**definition**  $V_{valid} :: "'e set <math>\Rightarrow$  'e  $V_{rec} \Rightarrow$  bool" where " $V_{valid} \in \mathcal{V} \equiv V_{\mathcal{V}} \cap N_{\mathcal{V}} = \{\} \land V_{\mathcal{V}} \cap C_{\mathcal{V}} = \{\} \land N_{\mathcal{V}} \cap C_{\mathcal{V}} = \{\}$ "

**definition** isViewOn :: "'e V\_rec  $\Rightarrow$  'e set  $\Rightarrow$  bool" where "isViewOn  $\mathcal{V} \in \mathbb{Z}$  V\_valid  $\in \mathcal{V} \land \forall_{\mathcal{V}} \cup \aleph_{\mathcal{V}} \cup \aleph_{\mathcal{V}} = \mathbb{E}$ "

**Definition:** Let E be a set of events of a type 'e. A VIEW ON E is an instance  $\mathcal{V}$  of the record type 'e V rec such that isViewOn  $\mathcal{V}$  E.

© Markus Tasch 2016



# Basic Security Predicates (BSPs)

**Building Blocks of Information Flow Properties** 

- Parametric in the perspective of the attacker
- Closure properties on a system's behavior



 i.e., executions potentially allowing deductions by the attacker can be explained by executions falsifying this deductions.

#### Formalization in I-MAKS

**type\_synonym** 'e BSP = "'e V\_rec  $\Rightarrow$  ('e list) set  $\Rightarrow$  bool"

```
definition BSP_valid :: "'e BSP \Rightarrow bool" where

"BSP_valid BSP \equiv \forall \mathcal{V} Tr E. (isViewOn \mathcal{V} \in \land \forall \tau \in \text{Tr. set } \tau \subseteq \text{E})

\rightarrow (\exists \text{Tr'}. \text{Tr'} \supseteq \text{Tr } \land \text{BSP } \mathcal{V} \text{Tr'})"
```

**Definition:** A BASIC SECURITY PREDICATE for a type of events 'e is an instance BSP of the type 'e BSP such that BSP valid BSP.



## Backwards-Strict Deletion (BSD)

#### Example

 $\begin{array}{l} \textbf{definition BSD :: ``' e BSP'' where} \\ \text{BSD } \mathcal{V} \ \text{Tr} \ \equiv \ \forall \, \alpha \, \beta. \ \forall \, c \, \in \, C_{\mathcal{V}} \, . \\ & \left( \left( \alpha \, @ \, [c] \, @ \, \beta \in \, \text{Tr} \, \land \, \beta \, \upharpoonright \, C_{\mathcal{V}} = [ \, ] \right) \right. \\ & \left. \left. \left( \exists \beta'. \, \alpha \, @ \, \beta' \in \, \text{Tr} \, \land \, \beta' \, \upharpoonright \, V_{\mathcal{V}} = \beta \, \upharpoonright \, V_{\mathcal{V}} \, \land \, \beta' \, \upharpoonright \, C_{\mathcal{V}} = [ \, ] \right) \right. \end{array} \right) \end{array}$ 

#### Explanation

- Considers the last event in of a trace
- Requires that there exists an alternative trace such that ...
  - the last event in  $C_{\mathcal{V}}$  is deleted
  - the alternative trace is equal to the initial trace w.r.t.  $\nabla_{\mathcal{V}}$
  - the trace only differs in events in  $N_{\mathcal{V}}$  after the deleted event in  $C_{\mathcal{V}}$



© Markus Tasch 2016

BSD ensures that the attacker cannot deduce whether an event in  $C_{\mathcal{V}}$  did actually occur in the trace the attacker is observing.

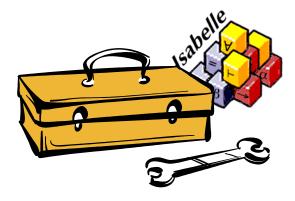
## Summary

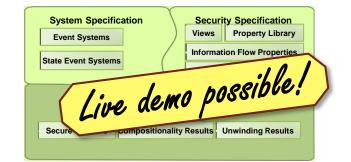
### I-MAKS provides tool support for ...

- specifying systems & security properties
- verifying the security of a system

### I-MAKS is ...

#### versatile


- no prescribed system model
- tailored security requirements


#### reliable

- machine-checked meta-theory
- machine-aided verification

### evolving

inherited extendibility of MAKS







### References

[DSHKRS08] Deepak D'Souza, Raveendra Holla, Janardhan Kulkarni, Raghavendra K. Ramesh and Barbara Sprick. On the Decidability of Model-Checking Information Flow Properties.

In Proceedings of the 4<sup>th</sup> International Conference on Information Systems Security (ICISS), pages 26-40, 2008

[DSHRS11] Deepak D'Souza, Raveendra Holla, K. R. Raghavendra and Barbara Sprick.

#### Model-Checking Trace-Based Information Flow Properties.

In Journal of Computer Security 19(1): 101-138 (2011)

#### [HS04] Dieter Hutter and Axel Schairer.

Possibilistic Information Flow Control in the Presence of Encrypted Communication.

In Proceedings of the European Symposium on Research in Computer Security (ESORICS), pages 209–224, 2004.

#### [Hut06] Dieter Hutter.

#### Possibilistic Information Flow Control in MAKS and Action Refinement.

In Proceedings of the 2006 International Conference on Emerging Trends in Information and Communication Security (ETRICS), pages 268-281, 2006.



#### [HMSS08] Dieter Hutter, Heiko Mantel, Ina Schaefer and Axel Schairer.

Security of Multi-Agent Systems: A Case Study on Comparison Shopping.

In Journal of Applied Logic (JAL), 5(2), pages 303-332, 2007.

#### © Markus Tasch 2016

### References

[GM82] Joseph A. Goguen and Jose Meseguer.

Security Policies and Security Models. In Proceedings of the 3rd IEEE Symposium on Security and Privacy (S&P), pages 11–20, 1982.

[Man00] Heiko Mantel.

#### Possibilistic Definitions of Security – An Assembly Kit.

In Proceedings of the 13th IEEE Computer Security Foundations Workshop (CSFW), pages 185–199, 2000.

[Man03] Heiko Mantel.

A Uniform Framework for the Formal Specification and Verification of Information Flow Security. PhD thesis, Saarland University, Saarbrücken, Germany, 2003.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markarius Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic. LNCS 2283. Springer, 2002.

[SS06] Fredrik Seehusen, Ketil Stølen:

**Maintaining Information Flow Security Under Refinement and Transformation.** In Proceedings of the 4<sup>th</sup> International Workshop on Formal Aspects in Security and Trust (FAST), pages 143-157, 2006



[SS09] Fredrik Seehusen and Ketil Stølen.

Information Flow Security, Abstraction and Composition.

Markus Tasch 2016