

FoMSESS 17 Maritta Heisel

Motivation Patterns AORE

ABC PET Pattern Problem Space Solution Space

Conclusion

Pattern-based Representation of Privacy Enhancing Technologies as Early Aspects

Rene Meis Maritta Heisel

The Ruhr Institute for Software Technology

University of Duisburg-Essen, Duisburg, Germany

September 7, 2017

Operationalization of Privacy Requirements

Problem Statement

1. How to find PETs operationalizing the needed privacy requirements?

UNIVERSITÄT

D_U_I_S_B_U R G

Open-Minded

- 2. How to select among different PETs addressing the privacy needs?
- 3. How to integrate PETs into the functional requirements?

Motivation

ABC PET

Conclusion

Patterns

AORE

Pattern

Operationalization of Privacy Requirements Solution Strategy: PET Patterns

FoMSESS 17

Maritta Heisel

Motivation

Patterns AORE ABC PET

Pattern

Problem Space Solution Space

Conclusion

- Problem

- 1. How to find PETs operationalizing the needed privacy requirements?
 - 2. How to select among different PETs addressing the privacy needs?

Solution

- PET patterns containing:
 - Solution provided by the PET
 - Context of applicability
 - Problem addressed
 - PET's impact on privacy and non-functional requirements
 - Application examples

Consumers: Requirements Engineers

Operationalization of Privacy Requirements

Solution Strategy: Aspect-Oriented Requirements Engineering

FoMSESS 17

- Maritta Heisel
- Motivation Patterns AORE
- ABC PET Pattern Problem Space Solution Space
- Conclusion

Problem

3. How to integrate PETs into the functional requirements?

Solution

Aspect-Oriented Requirements Engineering

- Privacy Requirements are cross-cutting
- PETs can be described independently of the application scenario
- Cross-cutting concerns are extracted in AORE and expressed mostly independently from the functionality they cross-cut
- Join points specify how aspects can be integrated (weaved) into other functionalities

PET Pattern Example: Attribute-Based Credentials¹ Problem Space – Motivation, Context and Problem

FoMSESS 17 Maritta Heisel

Motivation Patterns AORE ABC PET Pattern Problem Space Solution Space

Conclusion

Name Attribute-Based Credentials, Privacy-ABCs

Motivation A cigarette vending machine shall sell cigarettes only to adults, without identifying individuals or linking purchases.

Context/Problem A machine manages user requests for accessing a specific resource providing a service. Users' requests contain personal information (PI) or at least information about PI. This information needs to be checked for authenticity and legitimacy, while minimal PI is revealed.

¹based on ABC4Trust deliverables (http://abc4trust.eu)

PET Pattern Example: Attribute-Based Credentials **Problem Space** – Privacy Forces

FoMSESS 17 Maritta Heisel **Privacy Forces** Motivation Patterns Confidentiality Only proofs that PI has certain properties is needed, AORE the actual PI shall not be disclosed ABC PET Pattern Integrity The provided information shall be authentic and Problem Space Solution Space correct Conclusion Anonymity/Data unlinkability The service provider shall not be able to link the collected data to the user or to data from other interactions.

Collection information Users shall be informed about the PI that is collected

PET Pattern Example: Attribute-Based Credentials Problem Space – General Forces

FoMSESS 17

Maritta Heisel

General Forces

Motivation Patterns AORE ABC PET Pattern

Problem Space Solution Space

Conclusion

End-user friendliness needs to be balanced with degree of privacy protection needed

Performance needs to be balanced with degree of privacy protection needed

Costs needs to be balanced with degree of privacy protection needed

Abuse of PET It shall not be possible to get access to the service by providing incorrect data

Revocation It may be wished to re-identify an individual user in specific cases

PET Pattern Example: Attribute-Based Credentials UNIVERSITAT Solution Space – Solution – General Overview and Assumptions Open-Minded

Assumptions about User, User Agent, and Issuer

PET Pattern Example: Attribute-Based Credentials Solution Space – Solution – Aspects

FoMSESS 17

- Aspects 1. Provide presentation policy to User Agent
- Maritta Heisel

Motivation Patterns AORE ABC PET Pattern Problem Space Solution Space

Conclusion

- 1. I Tovide presentation policy to oser A
 - 2. Verify received presentation token
 - 3. Store used presentation token

Solution Space – Solution – Weaving and Base Problems

Weaving

Base Problems inlcude the definition of the presentation policy

Solution Space – Privacy Consequences

FoMSESS 17

Privacy Consequences

Maritta Heisel

Mot Pat AO AB Pat Pro

Con

Motivation		Benefits	Liabilities
Patterns AORE ABC PET Pattern Problem Space Solution Space Conclusion	Confidentiality	Proofs about credentials' proper-	Presentation policy has to re-
		ties can be generated	quest only minimal PI
	Integrity	Credentials cannot be modified,	Necessary changes of the creden-
		presentation tokens can only be	tials require a revocation of old
		created based on credentials	credentials
	Anonymity/	Presentation tokens are not link-	The information contained in the
	Data unlinka-	able to their user or other tokens	presentation token could allow to
	bility		create links
	Collection In-	The presentation policy specifies	Verifiers still need to inform
	formation	which PI is collected	about the purpose of PI collec-
			tion if this is necessary

Solution Space – General Consequences

General Consequences FoMSESS 17

Maritta Heisel

inancea meiser			
Motivation Patterns AORE		Benefits	Liabilities
	End-user	Positive if an existing ABC infras-	User friendliness strongly depends
	friendliness	tructure is used	on the user agent
Pattern	Performance	-	A higher response time is ex-
Problem Space Solution Space			pected
Conclusion	Costs	Relative low if an existing ABC	High if an own ABC infrastruc-
		infrastructure is used	ture is set up and maintained
	Abuse of PET	Corrupted tokens can be detected	If the software-to-be can be mis-
		and issuer guarantees correctness	used, it is hardly possible to iden-
			tify the malicious user
	Revocation	-	Revocation is not supported, but
			extensions including revocation
			exist

Solution Space – Examples and Related Patterns

Related Patterns Privacy-ABCs with Revocation Authority, Privacy-ABCs with Inspector

Conclusion

FoMSESS 17

Maritta Heisel

Motivation Patterns AORE

Pattern Problem Space Solution Space

Conclusion

Contributions

- 1. Pattern format for the presentation of PETs Addressing:
 - How to find PETs operationalizing the needed privacy requirements?
 - How to select among different PETs addressing the privacy needs?
- 2. Description of PETs as early aspects Addressing:
 - How to integrate PETs into the functional requirements?
- 3. PET pattern for Attribute-Based Credentials based on the ABC4Trust $project^2$

Future directions

- Creation of a (machine-readable) library of PET patterns
- Adding explicit references to threats that are mitigated by a PET