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Motivation 

• Enterprises are comprised of many applications  
 
 
 
 
 
 
 
 

• Analysis of camel-based application of industry partner 
– “service productivity platform (SPP)”
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Motivation

• Camel does not validate (user) input 
–vulnerable to cross-site scripting (XSS) and SQL injection 
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XSS Attack Example
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Existing solutions

• Input validation / sanitization 
• Sanitizers placed  

–manually  
–automatically  

Problem  
• Manual placement error prone 
• Existing automatic approaches have limitations 

– code duplication  
– inconsistent multiple-sanitization  
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Motivating example
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main—>func1

getSource

main—>func2

func1—>	getIN func2—>	getIN

getIN
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executed	
subsequently

• Sanitizers	not	always	idempotent	(existing	research)	
• Results	in	inconsistent	multi-sanitization	
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Our Solution 
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main—>func1

getSource

main—>func2

func1—>	getIN func2—>	getIN

getIN
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Prevents	multi-sanitization	error	and	code	duplication
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S1 S2 ⊥

S1 S2 ⊥

S4 ⊥ ⊥

S3 S3 ⊥

⊥ ⊥ ⊥

Dataflow graph (DFG) and sanitizer policy
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Sanitizer posible and exclusive 
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•Sanitizers	applied	on	one	of	the	exclusive	nodes	
•The	two	solutions	differ	at	this	stage	

DFG Sanitizer	policy

S1	possible

S2	possible

S1	exclusive

S2	exclusive
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S1 S2 ⊥

S1 S2 ⊥

S4 ⊥ ⊥

S3 S3 ⊥

⊥ ⊥ ⊥

Related Work
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S1 S2 ⊥

S1 S2 ⊥

S4 ⊥ ⊥

S3 S3 ⊥
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Less-optimized solution
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Fully-optimized solution
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Sanitizer	exclusive	DFG
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• 1st	iteration	p1:		n3		selected

• 2nd	iteration	p2:		n3	exist,	skip
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• 3rd	iteration	p3:		n8		selected
4

• 5th	iteration	p3:		n4	selected

p1
p2 p4 p3

• 4th iteration p4:  n3 and n8  exist, 
needs backtracking
– keep n3 (3 out edges) & 

     remove n8 (2 in edges in n5)
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Less-optimized solution
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S1 S2 ⊥

S1 S2 ⊥

S4 ⊥ ⊥
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Fully-optimized solution
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Demo application setup
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• Application consists of  
–15,214 nodes 
–119,026 edges 
–14,070 methods  
–724,806 bytes 

N Nodes

1 1540

2 1427

3 1610

4 1738

5 1790

Size	of	DFG

• N represents the call string context-sensitivity  
• Policy defined using:  

– three sources, six sinks and five sanitizer types  
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Evaluation (2-CFA)
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• Less-Optimized illustrates existing approaches 
–Optimizations rarely apply
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Conclusion

• Optimized automatic sanitizer placement  
– reduces sanitizer positions  

• Mitigates   
– code duplication problem  
– Inconsistent multi-sanitization  

• Valuable solution for real world applications 
–Complement by runtime tracking (10%)
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Summary
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