P
0‘\\‘1 S]{Q[

. [P Mathematisch-
* S Naturwissenschaftliche Fakultat
‘e

Idea: Optimized Automatic Sanitizer
Placement

Authors: Gebrehiwet B. Welearegai and Christian Hammer

13.09.17

@A@ Motivation
I

e Enterprises are comprised of many applications

e Analysis of camel-based application of industry partner
—-"service productivity platform (SPP)”

Idea: Optimized Automatic Sanitizer Placement

7, Motivation

e Camel does not validate (user) input
—vulnerable to cross-site scripting (XSS) and SQL injection

Spring-ws consumer
Input Field *

Camel processors

Client

Idea: Optimized Automatic Sanitizer Placement

@ﬁ@ XSS Attack Example

Input Page

Name: |<script> alert('Xss') </script> |
Send

Idea: Optimized Automatic Sanitizer Placement

Oﬁ‘wersg i

.
. 1]

., -~ EXisting solutions
]

e Input validation / sanitization
e Sanitizers placed

- manually

—automatically

Problem

e Manual placement error prone

e Existing automatic approaches have limitations
— code duplication
—inconsistent multiple-sanitization

Idea: Optimized Automatic Sanitizer Placement

executed
subsequently

main() {
exchange
funcl(exchange

0
)
func2(exchange) ;
}

funcl(exchange) {
exchange.getIN();

}

func2(exchange) A
exchange.getIN() ;

}

© 00 J O Ot Wi =

et
—_ O

1

getSource

/>

main—>funcl

| @

\

main—>func?

|®

funcl—> getIN

func2—> getIN

e Sanitizers not always idempotent (existing research)
e Results in inconsistent multi-sanitization

Idea: Optimized Automatic Sanitizer Placement

00‘\\1 Eers, 1};7'}(

:
.3 |!!!III!!!|
LD
o/
.

w Our Solution

I
()
1 main() { getSource
2 exchange = getSource(); ‘//; 3
3 funcl(exchange) ;
4 func2(exchange) ; main—>funcl main—>func2
3 I
6 funcl(exchange) {
7 exchange.getINQ) ; funcl—> getIN func2—> getIN
8 }
9 func2(exchange) {
10 exchange.getIN() ;
11 }

Prevents multi-sanitization error and code duplication

Idea: Optimized Automatic Sanitizer Placement

., - Dataflow graph (DFG) and sanitizer policy

Sources

O | 2

S1 S, 1

N
‘ S1 S, 1
@
A
@

s, | L | L

S3 S3 1

L L L

DFG Sanitizer policy

Idea: Optimized Automatic Sanitizer Placement

AWVers;r..
S
* a mqum
) J‘Q;

« — Sanitizer posible and exclusive

Ve
[]

S, possible @
S, exclusive
4
B

S1 possible

S; exclusive

DEG Sanitizer policy

e Sanitizers applied on one of the exclusive nodes
e The two solutions differ at this stage

Idea: Optimized Automatic Sanitizer Placement

Oo‘wers 1};7}

%, Related Work

]
G Sl exclusive SZ exclusive

ojp?c 3

o b
6 A

DFG Sanitizer policy

Sources

O | 2

V) 1

=
&
@
A

@

S4 1 1L

53 53 1

17 i | |

Idea: Optimized Automatic Sanitizer Placement

Sources

Ol | o
m]
‘ S1 S, 1

3K
runtime
tracking A S

1) L] L] ¢

3 S3 1

DFG Sanitizer policy

Idea: Optimized Automatic Sanitizer Placement

e 1stjteration p1: n3 selected

e 2"djteration py: ns exist, skip

e 3" jteration ps: ng selected

- 4th jteration ps: nz and ng exist,
needs backtracking

— keep n3 (3 out edges) &
remove ng (2 in edges in ns)

Sanitizer exclusive DFG

e 5t jteration ps: n4 selected

Idea: Optimized Automatic Sanitizer Placement

Sources

O | 2

S> 1

S1 S, 1

u

\ 4

‘ Sa 1 L
A

?

S3 S3 1

L L L

DFG Sanitizer policy

Idea: Optimized Automatic Sanitizer Placement

DFG

Idea: Optimized Automatic Sanitizer Placement

runtime
*racking

Sources

N\

S,

S,

1

S3

1

Sanitizer policy

Oﬁ‘wersq i

.
. 1]

., Demo application setup

—
e Application consists of Size of DFG

-15,214 nodes N Nodes
-119,026 edges 1 1540

- 14,070 methods 2 1427

- 724,806 bytes 3 1610

4 1738

5 1790

e N represents the call string context-sensitivity
e Policy defined using:
- three sources, six sinks and five sanitizer types

Idea: Optimized Automatic Sanitizer Placement

%, Evaluation (2-CFA)

]
B Fully-optimized B Less-optimized
140 129
121
105 90 90 |
70— —
35— —
9 14
o il |
Coverage (% Errors (%) Numbers Time (sec)

e Less-Optimized illustrates existing approaches
— Optimizations rarely apply

Idea: Optimized Automatic Sanitizer Placement

\Bﬁ‘wersg i

.
. 1]

- Conclusion

e Optimized automatic sanitizer placement
— reduces sanitizer positions

e Mitigates
— code duplication problem
— Inconsistent multi-sanitization

e Valuable solution for real world applications
— Complement by runtime tracking (10%)

Idea: Optimized Automatic Sanitizer Placement

AVeIs z..
0001 S]{ef

“s0d

?

o5

Summary

— O © 00 1O Otk W =

P

executed
subsequently

funcl(exchange);
func2(exchange) ;
}

funci(exchange) {
exchange.getIN();

}

func2(exchange) {

exchange.getINQ);

1

/2

getSource
\ \

main—>funci

main—>func2

+ ©

func1—> getiN

|&®

func2—> getIN

140

105

70

35

B Fully-optimized

M Less-optimized

129

90 90

40
- OI

g 14

Coverage (%) Errors (%)

Numbers Time

121

(sec)

Idea: Optimized Automatic Sanitizer Placement

