
Mathematisch-
Naturwissenschaftliche Fakultät

Universität Potsdam

Idea: Optimized Automatic Sanitizer
Placement

Authors: Gebrehiwet B. Welearegai and Christian Hammer

13.09.17

Idea: Optimized Automatic Sanitizer Placement

Motivation

• Enterprises are comprised of many applications  
 
 
 
 
 
 
 
 

• Analysis of camel-based application of industry partner
– “service productivity platform (SPP)”

2

Idea: Optimized Automatic Sanitizer Placement

Motivation

• Camel does not validate (user) input
–vulnerable to cross-site scripting (XSS) and SQL injection

3

Idea: Optimized Automatic Sanitizer Placement

XSS Attack Example

4

Idea: Optimized Automatic Sanitizer Placement

Existing solutions

• Input validation / sanitization
• Sanitizers placed

–manually
–automatically  

Problem
• Manual placement error prone
• Existing automatic approaches have limitations

– code duplication
– inconsistent multiple-sanitization

5

Idea: Optimized Automatic Sanitizer Placement

Motivating example

6

main—>func1

getSource

main—>func2

func1—>	getIN func2—>	getIN

getIN

1

2 3

4 5

6

executed	
subsequently

• Sanitizers	not	always	idempotent	(existing	research)	
• Results	in	inconsistent	multi-sanitization	

Idea: Optimized Automatic Sanitizer Placement

Our Solution

7

main—>func1

getSource

main—>func2

func1—>	getIN func2—>	getIN

getIN

1

2 3

4 5

6

Prevents	multi-sanitization	error	and	code	duplication

Idea: Optimized Automatic Sanitizer Placement

S1 S2 ⊥

S1 S2 ⊥

S4 ⊥ ⊥

S3 S3 ⊥

⊥ ⊥ ⊥

Dataflow graph (DFG) and sanitizer policy

8

DFG Sanitizer	policy

Sources

Sinks

ø

ø
53 4 6

8 9

14 15

10
11

16

1

19

7

13

17 18

2

20

12

Idea: Optimized Automatic Sanitizer Placement

Sanitizer posible and exclusive

9

•Sanitizers	applied	on	one	of	the	exclusive	nodes	
•The	two	solutions	differ	at	this	stage	

DFG Sanitizer	policy

S1	possible

S2	possible

S1	exclusive

S2	exclusive

Idea: Optimized Automatic Sanitizer Placement

S1 S2 ⊥

S1 S2 ⊥

S4 ⊥ ⊥

S3 S3 ⊥

⊥ ⊥ ⊥

Related Work

10

DFG Sanitizer	policy

Sources

Sinks

ø

ø
53 4 6

8 9

14 15

10
11

16

1

19

7

13

17 18

2

20

12

S2	exclusiveS1	exclusive

Idea: Optimized Automatic Sanitizer Placement

S1 S2 ⊥

S1 S2 ⊥

S4 ⊥ ⊥

S3 S3 ⊥

⊥ ⊥ ⊥

Less-optimized solution

11

DFG Sanitizer	policy

Sources

Sinks

ø

ø
53 4 6

8 9

14 15

10
11

16

1

19

7

13

17 18

2

20

12 needs	
runtime	
tracking

Idea: Optimized Automatic Sanitizer Placement

Fully-optimized solution

12

Sanitizer	exclusive	DFG

1 2

3 4

5

876

3

• 1st	iteration	p1:		n3		selected

• 2nd	iteration	p2:		n3	exist,	skip

8

• 3rd	iteration	p3:		n8		selected
4

• 5th	iteration	p3:		n4	selected

p1
p2 p4 p3

• 4th iteration p4: n3 and n8 exist,
needs backtracking
– keep n3 (3 out edges) &

 remove n8 (2 in edges in n5)
8

Idea: Optimized Automatic Sanitizer Placement

Less-optimized solution

13

DFG Sanitizer	policy

S1 S2 ⊥

S1 S2 ⊥

S4 ⊥ ⊥

S3 S3 ⊥

⊥ ⊥ ⊥

Sources

Sinks

ø

ø
53 4 6

8 9

14 15

10
11

16

1

19

7

13

17 18

2

20

12

Idea: Optimized Automatic Sanitizer Placement

S1 S2 ⊥

S1 S2 ⊥

S4 ⊥ ⊥

S3 S3 ⊥

⊥ ⊥ ⊥

Fully-optimized solution

14

DFG Sanitizer	policy

Sources

Sinks

ø

ø

needs	
runtime	
tracking

53 4 6

8 9

14 15

10
11

16

1

19

7

13

17 18

2

20

12

Idea: Optimized Automatic Sanitizer Placement

Demo application setup

15

• Application consists of
–15,214 nodes
–119,026 edges
–14,070 methods
–724,806 bytes

N Nodes

1 1540

2 1427

3 1610

4 1738

5 1790

Size	of	DFG

• N represents the call string context-sensitivity
• Policy defined using:

– three sources, six sinks and five sanitizer types

Idea: Optimized Automatic Sanitizer Placement

Evaluation (2-CFA)

16

0

35

70

105

140

Coverage	(%) Errors	(%) Numbers Time	(sec)

121

14

40

90

129

9
0

90

Fully-op[mized Less-op[mized

• Less-Optimized illustrates existing approaches
–Optimizations rarely apply

Idea: Optimized Automatic Sanitizer Placement

Conclusion

• Optimized automatic sanitizer placement
– reduces sanitizer positions  

• Mitigates
– code duplication problem
– Inconsistent multi-sanitization  

• Valuable solution for real world applications
–Complement by runtime tracking (10%)

17

Idea: Optimized Automatic Sanitizer Placement

Summary

18

0

35

70

105

140

Coverage (%) Errors (%) Numbers Time (sec)

121

14

40

90

129

9
0

90

Fully-optimized Less-optimized

