

Inference-proof program-based mediation of data sources

Joachim Biskup Cornelia Tadros

TU Dortmund Faculty of Computer Science Information Systems and Security – ISSI

17. Feb. 2016

A Challenging Scenario

A Straightforward Solution

A Straightforward Solution

A Solution to Balance the Hiding/Provision Trade-Off

Existing Technologies

- Logic-oriented belief forming
- Adversarial reasoning
- Information system integration and mediation
- Logic-based inference control
- Language-based information flow control and declassification

Talk Based on

- Joachim Biskup, Cornelia Tadros: Constructing Inference-Proof Belief Mediators. Published in Data and Applications Security and Privacy, 2015.
- Joachim Biskup, Cornelia Tadros: Confidentiality Enforcement by Hybrid Control of Flows from Abstract Information States through Program Execution via Declassification.

Overview

Inference-Proof Information Mediator

Inference-Proof Information Mediator

Inference-Proof Information Mediator

information flow

Introduction and Overview

Main Requirements for the Mediator's Construction

Mediator Framework for Unified Inference Control

Conclusion

Main Requirements for the Mediator's Construction

Confidentiality Policy:

confidential pieces of information as sets $\mathcal S$ of abstract integrated information states

Semantics:

if actual integrated information state *ibs* is contained in such an S, the cooperation partner must not know this

► Narrower Scenario

according to assumptions

Semantics of the Confidentiality Policy

 semantics based on an abstract system model, here Runs & Systems

- mediator's functionality defined by runs
- observer models partner as an attacker, a skeptical reasoner

Semantics of the Confidentiality Policy

▶ policy protects confidential information against skeptical inferences by *K*

- K reasons on observations and background
- K models knowledge as a set of possible situations

Property (Confidentiality Preservation)

For all runs r and times t and for all $S \in \text{pol}$ it holds $\mathcal{K}(r, t) \not\subseteq S$.

Basic Information Requests on Virtually Integrated Information

Mediator Framework for Unified Inference Control

1. Isolation by typing

1. Isolation by typing

2. Declassification

- the placement of declassification assignments is a policy for information provision
- it mainly trades off ressource efficiency for information provision or vice versa

3. History-aware policy compliance

► Policy: sets S ⊆ IBS of integrated inform. states

3. History-aware policy compliance

- ► Policy: sets S ⊆ IBS of integrated inform. states
- History: previous view view_{Att} $\subseteq IBS$

3. History-aware policy compliance

- ► Policy: sets S ⊆ IBS of integrated inform. states
- ► History: previous view view_{Att} $\subseteq IBS$
- Initial Policy Compliance: view_{Att} ⊈ S for all S ∈ policy_{Att}

4.Need of Local Flow Tracking

- ► Policy: sets S ⊆ IBS of integrated inform. states
- ► History: previous view view_{Att} $\subseteq IBS$
- Initial Policy Compliance: view_{Att} ⊈ S for all S ∈ policy_{Att}

5. Identifying implicit flows

Goal

Find alternative execution paths

to hide execution paths

originating from confidential pieces of integrated information

by making them indistinguishable from the alternatives

Approach

Identify and represent such candidates of alternative paths

by symbolic execution of protected realm commands

during program execution

6. Determining local flows by FlowTracker

as partition of set of integrated inform. states

- represents indistinguishable execution paths originating from the respective inform. states leading to a value r_i of a container c
- initialized for basic inform. reactions
- refined by FlowTracker using a precomputed symbolic expression for c

7. Evaluation of harmlessness by CIECensor

partition for container C

7. Evaluation of harmlessness by CIECensor

secret S

partition for container C

identifying

(

harmful unions of blocks

$$B_{r_1} \cup B_{r_2}) \cap \mathsf{view}_{\mathsf{attacker}} \subseteq \mathcal{S}$$

8. Filtering and modifying by generalization

The Complete Framework

Conclusion

 for a holistic control based on a unified view on heterogenous sources by virtual integration

- for a holistic control based on a unified view on heterogenous sources by virtual integration
- adhering to requirements in line with the agent paradigm

- for a holistic control based on a unified view on heterogenous sources by virtual integration
- adhering to requirements in line with the agent paradigm
- with a integrated-inform.-program interface providing basic belief requests for a unified inference control based on

- for a holistic control based on a unified view on heterogenous sources by virtual integration
- adhering to requirements in line with the agent paradigm
- with a integrated-inform.-program interface providing basic belief requests for a unified inference control based on
 - controlled interaction execution

- for a holistic control based on a unified view on heterogenous sources by virtual integration
- adhering to requirements in line with the agent paradigm
- with a integrated-inform.-program interface providing basic belief requests for a unified inference control based on
 - controlled interaction execution
 - language-based information flow control

- for a holistic control based on a unified view on heterogenous sources by virtual integration
- adhering to requirements in line with the agent paradigm
- with a integrated-inform.-program interface providing basic belief requests for a unified inference control based on
 - controlled interaction execution
 - language-based information flow control
- constructed using

- for a holistic control based on a unified view on heterogenous sources by virtual integration
- adhering to requirements in line with the agent paradigm
- with a integrated-inform.-program interface providing basic belief requests for a unified inference control based on
 - controlled interaction execution
 - language-based information flow control
- constructed using
 - security typing,

- for a holistic control based on a unified view on heterogenous sources by virtual integration
- adhering to requirements in line with the agent paradigm
- with a integrated-inform.-program interface providing basic belief requests for a unified inference control based on
 - controlled interaction execution
 - language-based information flow control
- constructed using
 - security typing,
 - declassification,

- for a holistic control based on a unified view on heterogenous sources by virtual integration
- adhering to requirements in line with the agent paradigm
- with a integrated-inform.-program interface providing basic belief requests for a unified inference control based on
 - controlled interaction execution
 - language-based information flow control
- constructed using
 - security typing,
 - declassification,
 - flow tracking inspired by symbolic execution

- for a holistic control based on a unified view on heterogenous sources by virtual integration
- adhering to requirements in line with the agent paradigm
- with a integrated-inform.-program interface providing basic belief requests for a unified inference control based on
 - controlled interaction execution
 - language-based information flow control
- constructed using
 - security typing,
 - declassification,
 - flow tracking inspired by symbolic execution
 - and generalization for policy compliance